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Group delay, stored energy, and the tunneling of evanescent electromagnetic waves

Herbert G. Winful
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue,
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~Received 4 April 2003; published 28 July 2003!

A general relation between group delay and stored electric and magnetic energies is presented for two-port
networks. It generalizes the results of Dicke to situations where electric and magnetic stored energies differ.
The general result is applied to tunneling evanescent waves in cutoff waveguides. It is shown explicitly that the
group delay is equal to the dwell time plus a self-interference delay which is proportional to the net reactive
stored energy. The Hartman effect, the saturation of group delay with length in cutoff waveguides, is explained
on the basis of saturation of stored energy with guide length. It is pointed out that the anomalously short delays
observed in tunneling experiments are not propagation delays and should not be associated with superluminal
velocities. A strictly luminal energy velocity is derived and a method is suggested for the measurement of dwell
time and energy velocity.

DOI: 10.1103/PhysRevE.68.016615 PACS number~s!: 42.25.Bs, 42.70.Qs
lin
in
e
z
i
a

r.
ls

ri

s
on
ag

y
w

It
om
se
fo
un
d
-
e
a

p
a

de
, i
us
v
a

l’’
e

ting
in-

may
, it

g
ave-

po-
as

ion,
that

the
t the
ave
lse
out-

ith
ves
en-

ase
l-
y
be-
de-

n of
of

the
gy
man
p
as
rrier
f a
I. INTRODUCTION

It is surprising that a problem as classical as the tunne
of a pulse of electromagnetic energy through an obstacle
waveguide has become the subject of ongoing debat
modern physics@1–3#. Experiments by Enders and Nimt
appeared to show electromagnetic pulses traveling w
group velocities in excess of the vacuum speed of light
they tunneled through a constriction in a waveguide@4#. This
led to notions@5# and disputations@6–8# regarding the pos-
sibility of superluminal signaling and information transfe
Other experiments with photonic band-gap structures a
showed apparent superluminal barrier traversal@9,10#. It was
found that the traversal time of a pulse across a thick bar
becomes independent of the barrier width@4,10#, a phenom-
enon called the Hartman effect@11#. These observations a
well as the apparent agreement with theoretical predicti
have led to a widespread belief that tunneling electrom
netic waves travel with group velocities that exceedc and
can even become infinite@8,12#. Various arguments, mostl
based on pulse reshaping, are then advanced to explain
such anomalous group velocities do not violate causality.
widely believed that the entire transmitted pulse comes fr
just the small early tail of the much larger incident pul
@6,12,13#. However, many have also expressed discom
with the current explanations. Landauer states that ‘‘at a f
damental theoretical level the easy explanation suggeste
unsatisfying.’’ @3# With regard to the whole pulse being re
constructed by the early tail, F.E. Low speaks for many wh
he says ‘‘how and why it happens is not understood, at le
by me.’’ @14#

A fundamental difficulty with these superluminal grou
velocities is that the wave vector of a tunneling wave is
imaginary quantity. The group velocity, defined as the
rivative of angular frequency with respect to wave number
likewise imaginary and devoid of physical meaning. Beca
the wave vector is purely imaginary for an evanescent wa
this also means that the mechanism advanced by Japha
Kurizki @13# as a universal explanation of ‘‘superlumina
propagation cannot possibly apply to tunneling evanesc
1063-651X/2003/68~1!/016615~9!/$20.00 68 0166
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waves. The work cited uses a summation of propaga
waves with real wave vectors and appeals to destructive
terference between these propagating waves. While this
provide a mechanism in regions of allowed propagation
has no relevance for regions of true evanescence~e.g., for a
waveguide below cutoff! where there are no propagatin
modes. Of course the evanescent field does enter the w
guide by means of the high-frequencypropagatingcompo-
nents at the pulse front at the time of turn on. These com
nents are strictly limited by the vacuum speed of light
discussed by Sommerfeld and Brillouin@15#. Once the tran-
sient front traverses the guide there is no longer propagat
only evanescence: exponential decay of storage fields
merely stand and wave, akin to breathers@16#. Operationally,
superluminal velocities have been inferred by measuring
delay time between the appearance of a pulse peak a
input and a pulse peak at the output of a barrier. We h
recently shown, however, that the peak of a tunneling pu
does not even enter the barrier and hence the input and
put pulse peaks are not related by causal propagation@16#.
The question then is what is the appropriate time scale w
which to characterize the tunneling of electromagnetic wa
and what is the meaning of the observed delay? The influ
tial review article by Hauge and Støvneng@17# lists seven
tunneling time definitions of which two, the group delay~de-
fined by the frequency derivative of a transmission ph
shift! and the dwell time~defined by an integrated probabi
ity or stored energy! are considered ‘‘well established.’’ The
do remain contentious, however, and even the relation
tween these two time scales is controversial, with some
nying any connection between them@18#.

In recent papers we have suggested an explanatio
these ‘‘faster-than-light’’ phenomena as the modulation
the stored energy in a cavity by the slow envelope of
input pulse@16,19#. We have used the concept of ener
storage and release to resolve the paradox of the Hart
effect @19#. In that work, we proved the equality of the grou
delay and the dwell time for a situation where the barrier w
surrounded by free space so that the approach to the ba
involved nondispersive propagation. For the problem o
©2003 The American Physical Society15-1
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HERBERT G. WINFUL PHYSICAL REVIEW E68, 016615 ~2003!
constricted waveguide, which is more analogous to quan
tunneling, the approach to the barrier occurs in a disper
waveguide and that can affect the overall delay. In this pa
we derive an explicit relation between group delay and
stored electric and magnetic energies in a waveguide wi
discontinuity. This is an important result that generalizes
lations obtained by Dicke@20# and Carlin@21# to situations
in which the stored electric and magnetic energies differ
where the waves beyond the scattering region are disper
It demonstrates the importance of the net reactive stored
ergy in situations that involve evanescent fields. We sh
that this expression for the group delay in terms of sto
energy yields the same result as that based on the frequ
derivative of the transmission phase shift. It is shown that
group delay equals the dwell time plus a self-interferen
delay, thus unifying these two tunneling time definitions. T
Hartman effect for the undersized waveguide is explained
the basis of the saturation of stored energy with increas
length. We calculate an energy velocity, show that it
strictly subluminal for tunneling pulses, and present a rec
for its measurement and for the determination of the dw
time.

II. THE MODEL

When a pulse of electromagnetic energy encounters a
continuity in a waveguide, it is partially reflected and pa
tially transmitted. In the process some of the energy may
up in higher-order evanescent modes which, being nonpro
gating, are confined to the vicinity of the obstacle. Far aw
from the obstacle, its effects can be completely described
its reflection coefficient, its impedance, or its scattering m
trix @22,23#. A key simplification is that the scatterer does n
alter the polarization state of the incident wave so that
may use scalar analysis. Consider a waveguide junctio~a
two-port network! to which is connected two uniform
waveguides filled with lossless, isotropic, dispersionle
nonmagnetic material of refractive indexn1 ~Fig. 1!. For
simplicity, we assume the waveguides support only
dominantTE10 mode. This is the situation of greatest pra
tical interest@4#. The electric and magnetic fields for th
mode can be written

E~x,z,v!5 ŷ sin~gx!c~z!, ~1a!

Ht~x,z,v!5 x̂ sin~gx!
i

vm0

dc

dz
, ~1b!

FIG. 1. Schematic of the process of scattering by an obstac
a waveguide.
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Hz~x,z,v!52 ẑcos~gx!
ig

vm0

dc

dz
, ~1c!

whereg5p/a is the eigenvalue of the transverse mode,a is
the width of the guide,z is the propagation direction, and
harmonic time dependence of exp(2ivt) has been assumed
The wave functionc satisfies the Helmholtz equation

d2c

dz2 1b2c50, ~2!

where the propagation constantb is given by

b25n1
2k0

22g2, ~3!

with k05v/c. There is a cutoff angular frequencyv1
5gc/n1 for which b50 and below which the waveguid
does not support propagating modes. We will assume op
tion above this cutoff frequency for the waveguides I and
connected to the junction II. For now we will leave the n
ture of region II unspecified, beyond requiring that it be los
less. Our goal is to calculate the group delay a narrowb
pulse suffers in transmission through the junction and to
late it to the energy stored.

III. RELATION BETWEEN GROUP DELAY
AND STORED ENERGY

The group delay is given by the derivative of the phase
the transmitted pulse with respect to angular frequency.
obtain a relation between group delay and stored energy
use a variational theorem~also known as the energy theo
rem! which follows from taking frequency derivatives of th
complex Maxwell’s equations@23#,

R
S
F ]E

]v
3H* 1E* 3

]H

]v G•ds54i ^U&. ~4!

It relates the frequency derivatives of the electric and m
netic fields on a closed surface to the total time-aver
stored energŷU&5^Um&1^Ue& within the volume bounded
by the surface. The electric and magnetic stored energies
given by

^Ue&5
1

4 EV
E•E*

]v«

]v
dv, ^Um&5

1

4 EV
H•H*

]vm

]v
dv,

~5!

expressions which hold for general dispersive media. T
surface integration is carried out over the metal walls of
waveguide and planesz50 andz5L located in waveguides
I and III. Only the transverse components of the fields co
tribute to the surface integral. On the other hand, the volu
integrals that yield the total energy include both transve
and longitudinal components of the electromagnetic field

With use of the mode fields of Eq.~1!, the integrand in
Eq. ~4! becomes

ẑ
i

vm0
F ]c

]v

]c*

]z
1

c*

v

]c

]z
2c*

]2c

]v]zG . ~6!

in
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At the entrance surface the field consists of an incident
reflected wave

c I5E0~eibz1Re2 ibz!, ~7!

while at the exit the field has only a transmitted compon

c III 5TE0eibz. ~8!

In terms of their magnitudes and phases, we haveR
5uRueifr andT5uTueif t. For lossless media the magnitud
of the reflection and transmission coefficients satisfy

uRu21uTu251, ~9!

while for symmetric barriers, which we will now assum
f r2(f t1bL)56p/2. Evaluating the surface integrals
z50 andz5L, we obtain

AuE0u2

2vm0
H 22i Im~R!S b

v
2

db

dv D12ib
df0

dv

12bF uRu2
d lnuRu

dv
1uTu2

d lnuTu
dv G J 54i ^U&,

~10!

wheref05bL1f t is the total phase of the transmitted wa
andA5ab is the cross-sectional area of the waveguide. T
group delay is the frequency derivative of the phase of
transmitted wave, hence we find

tg[
df0

dv
5

^U&
Pin

1
Im~R!

b S b

v
2

db

dv D , ~11!

where Pin5«0uE0u2Ac2b/4v is the time averaged inciden
power and Im(R) is the imaginary part of the reflection co
efficient. Because of the symmetry of the barrier, the refl
tion group delayt r5df r /dv is equal to the transmissio
group delaytg .

The first term in Eq.~11! is the standard result of Dick
relating group delay to the total time average stored ene
in a termination @20,21#. The second term is a self
interference term arising from the overlap between incid
and reflected waves in the region before the obstacle@17#. It
depends not only on the reflectivity of the obstacle but a
on the dispersion in the connecting waveguides. It vanis
if the waveguides are dispersionless since in that case
interference pattern~envelope! travels with the same velocity
as the phase fronts and there is no extra delay. It also
ishes when the reflection coefficient is zero~at transmission
resonances! or is purely real. Clearly the standard result
incomplete as it fails to account for this coherent term. B
cause this term is proportional to the inverse of the propa
tion constant, its impact will be substantial near the cutoff
the dominant mode where the propagation constant goe
zero.

The imaginary part of the reflection coefficient can
related to a difference between stored magnetic and ele
energies through the complex Poynting theorem for loss
media@23#:
01661
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S
~E3H* !•ds54v~^Um&2^Ue&!. ~12!

Upon inserting the expressions for the fields at the entra
and exit surfaces, we find

Im~R!52v
~^Um&2^Ue&!

Pin
. ~13!

This expression is reminiscent of the definition of theQ of a
cavity resonator:

Q5
v3~ time-average energy stored in system!

~energy loss per second in system!
.

~14!

In Eq. ~13!, however, the numerator is proportional to the n
reactive energy stored in the junction while the denomina
is the energy per second incident on the junction. It is
essence an externalQ. Indeed the barrier region forms a
evanescent mode resonator with a finite decay time. With
of Eq. ~13! the group delay can now be written

tg[
df0

dv
5

^U&
Pin

1
^Um&2^Ue&

Pin
S vp1

0

vg1
0 21D . ~15!

Here vp1
0 5v/b is the phase velocity in the region outsid

the junction whilevg1
0 5dv/db is likewise the group veloc-

ity outside the junction, assuming an infinite waveguid
From the dispersion relation~3! we find that these velocities
are related through

vp1
0 vg1

0 5c2/n1
2 . ~16!

For the infinite waveguide the phase and group veloci
satisfy the inequalityvg1

0 ,c/n1,vp1
0 .

Equation ~15! relates the group delay to the total tim
average stored energy and the net reactive energy in c
drical waveguides with discontinuities, such as the und
sized waveguides used in tunneling experiments. It redu
to the well known expression@20,21# under resonance con
ditions when stored electric and magnetic energies are eq
which is the case for propagating modes, or when the ju
tion is surrounded by a medium without dispersion, or
above cutoff in a waveguide. The junction is inductive if th
magnetic energy exceeds the electric energy and is capac
otherwise. Increasing the stored magnetic energy comp
to the stored electric energy will increase the group de
Conversely, increasing the electric energy will decrease
group delay. For the cutoff dominant mode, the magne
energy exceeds the electric energy.~Elsewhere we conside
capacitive obstacles for which the interference delay is ne
tive.! Above cutoff, the barrier is no longer a barrier but a
‘‘accelerator’’ since the phase velocity is higher in this regi
than outside. Under these conditions the stored electric
ergy can exceed the stored magnetic energy and thus n
tive delays become possible. This should not be surpris
since electromagnetic waves travel faster in lower index m
terial.
5-3
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IV. RELATION BETWEEN GROUP DELAY „PHASE TIME …

AND DWELL TIME

The tunneling literature defines a dwell time as@18,24#

td5^U&/Pin . ~17!

This is a measure of the average time spent by a wave pa
in a given region of space. This dwell time is not quite t
same thing as the lifetimeQ first introduced by Smith. There
was a term that Smith eliminated through an averaging p
cedure because it was oscillatory with distance. That te
turns out to be the self-interference term in Eqs.~11! and
~15!. Because tunneling without distortion requires tha
pulse be much longer than the barrier width@16#, an incident
pulse will always interfere with the reflected portion of itse
in front of the barrier@25#. This self-interference gives rise t
a pulsating reactive contribution that must be taken into
count when defining an overall delay time. In sum, the gro
delay is seen to consist of two contributions. The first term
the usual dwell time. The second term is due to reac
stored energy, instantaneous changes in the net stored e
resulting from self-interference. We can thus write the gro
delay as

tg5td1t i , ~18!

where td is the usual dwell time andt i is the self-
interference delay. This simple result is contrary to the of
stated view that there is no relation between the dwell ti
and the phase time@18#. When the reflectivity is high the
incident pulse spends much of its time ‘‘dwelling’’ in front o
the barrier as it interferes with itself during the tunneli
process. If we include this excess dwell time and interp
dwell time as a difference between time spent in the prese
of the barrier minus time spent in its absence, we recover
lifetime Q as originally intended by Smith. This generalize
dwell time is identical to the group delay. Although the effe
of self-interference in the tunneling process has been ap
ciated, it had been thought that its contribution to the ove
group delay could not be disentangled@25,26#. Here we have
succeeded in disentangling the self-interference delay f
the dwell time and shown that the group delay has an un
biguous meaning in terms of energy storage.

In Ref. @19#, we showed that the group delay was identic
to the dwell time for a photonic band-gap structure~PBG!.
There we assumed that the medium surrounding the P
was dispersionless and had the same refractive index a
average index of the PBG. This led to the vanishing of
self-interference term. In related work on PBG’s, it has be
recognized that there is a term associated with a differe
between stored electric and magnetic energies@27#. How-
ever, those authors associate this term plus the dwell t
with the inverse of an energy velocity rather than with t
group delay and hence do not make the link between gr
delay and stored energy. A self-interference term similar
the one we have described here also appears in qua
tunneling@28#. That term happens to be the Lagrangian t
leads to the Schro¨dinger equation. It is interesting to not
01661
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that the self-interference term here is also proportional to
free-field Lagrangian for the electromagnetic field.

We now comment on some of the other tunneling tim
definitions often mentioned in the literature@17#. The in-
plane Larmor timety , originally defined for tunneling quan
tum particles, measures the spin precession in a plane
pendicular to an auxiliary magnetic field appended to
barrier @18#. A related approach based on Faraday rotat
was suggested for electromagnetic waves@29#. The Larmor
time, however, has been shown to agree with the dwell t
@18# and hence provides no new information. Bu¨ttiker @18#
introduced another Larmor timetB5Aty

21tz
2, which takes

into account the rotation of the precessing spin towards
direction z of the applied magnetic field. That time agre
with another time scaletBL introduced by Bu¨ttiker and Lan-
dauer which requires an extra modulation of the barrier@30#.
These two times, however, have been shown to be more
back-reaction of a measurement than an intrinsic tunne
time scale and so we do not comment further on them@31#.

V. APPLICATION TO TUNNELING EVANESCENT WAVES

The general relations between group delay, dwell tim
and stored energy derived in the previous sections will n
be tested by applying them to the specific problem of
tunneling of evanescent waves through a waveguide be
cutoff. We will obtain the group delay by two methods:~i! by
calculating the frequency derivative of the phase shift a
~ii ! by calculating the time average stored energy and the
reactive energy.

The barrier region~region II in Fig. 1! is taken as a wave
guide of the same transverse dimensions as the conne
waveguides I and III. It contains a nondispersive materia
refractive indexn2,n1 . The frequency of the incident wav
is chosen so that it is below the cutoff frequency of th
central waveguide. In that case, it acts as an attenuator
an attenuation constantk given by

k25g22n2
2k0

2 . ~19!

The cutoff angular frequency of the barrier isv25gc/n2 .
This problem has previously been analyzed by Martin a
Landauer@32#. However, we find it useful to repeat th
analysis here since the results of@32# contain a few mis-
prints. The field inside the barrier is a solution of the Helm
holtz equation~3! with b2 replaced by2k2. It can be writ-
ten as a sum of forward and backward evanescent wave

c II 5Ce2kz1Dekz. ~20!

The constantsC and D as well as the transmission and r
flection coefficients are determined by requiring the contin
ity of c anddc/dz at the boundariesz50 andz5L. They
are given by

C5~12 ib/k!ekL/2g, ~21a!

D5~11 ib/k!e2kL/2g, ~21b!

T5e2 ibL/g, ~22!
5-4
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R52 i @~k/b1b/k!sinhkL#/2g, ~23!

where g5coshkL1iD sinhkL and D5(k/b2b/k)/2. The
transmissivityuTu2 of the barrier as a function of frequency
shown in Fig. 2 for several values of the barrier strengthgL.
The stop band is the frequency regionv1,v,v2 , where
v25(n1 /n2)v1 .
nt
p

tio

th
h

he
ch

01661
The phase of the transmitted wave is

f05arg~T!1bL52tan21~D tanhkL !. ~24!

From this we find the group delay
tg5
df0

dv
5

L

vg1
0

cos2 f0

2 H v1
2

v2 S b

k
1

k

b D 2 tanhkL

kL
2

n2
2

n1
2 S b2

k2 21D sech2 kLJ , ~25!

where

cos2 f05
1

11D2 tanh2 kL
~26!

and

vg1
0 5~c/n1!A12~v1 /v!2. ~27!

Taking the energy approach, we find

^U&5S «0uE0u2A

4 D cos2 f0

2 H g2

k0
2 S k21b2

k2 D tanhkL

k
2Ln2

2S b2

k2 21D sech2 kLJ ~28!

for the time average stored energy and

^Um&2^Ue&5S «0uE0u2A

4 D cos2 f0

2 S k21b2

k0
2 D tanhkL

k
~29!

for the net reactive stored energy. Recognizing that the time averaged incident power is

Pin5
«0uE0u2Acb

4k0
, ~30!

we obtain from Eqs.~15!, ~28!, and~29! the dwell time

td5
L

vg1
0 S cos2 f0

2 D H v1
2

v2 S 11
b2

k2D tanhkL

kL
2

n2
2

n1
2 S b2

k2 21D sech2 kLJ ~31!
use
the

by

de-

in-
e
nd

ve
ry
and the self-interference time

t i5
L

vg1
0 S cos2 f0

2 D v1
2

v2 S 11
k2

b2D tanhkL

kL
. ~32!

Their sum yields the group delay which is seen to be ide
cal to Eq.~25!. It is indeed gratifying to find that the grou
delays calculated by two such different approaches are
complete agreement. This highlights the intimate connec
between group delay and stored energy.

Figure 3 shows the group delay~solid line!, the dwell
time, and the interference delay. It is seen that outside
stop band the dwell time is identical to the group delay. T
two differ in the stop band where the reflectivity is high. T
interference delay diverges as the incident wave approa
i-

in
n

e
e

es

cutoff whereas the dwell time goes to zero. This is beca
the incident wave spends all of its time being reflected by
barrier and nothing penetrates. The times are normalized
t05L/c, the transit time of a light front across a distanceL
in vacuum. Normalized delays less thanL/c have been
called superluminal. However, these are not propagation
lays and should not be associated with velocities.

VI. HARTMAN EFFECT AND ITS ORIGIN

For an opaque barrier the group delay saturates with
creasing barrier length@11#. This phenomenon, termed th
Hartman effect, has been taken to imply superluminal, a
indeed infinite velocities of propagation for tunneling wa
packets@4#. We disagree with this interpretation. The ve
5-5
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fact that the delay saturates with increasing barrier len
means that it cannot be a propagation delay and should
be associated with a velocity of propagation. In fact, we h
shown through numerical solutions of the Klein-Gord
equation that the peak of an incident narrowband pulse d
not actually propagate from input to exit@16#. Input and
output peaks are not necessarily related by causal prop
tion, as pointed out by Bu¨ttiker and Landauer@30#. We can
explain the Hartman effect on the basis of saturation
stored energy with increasing length of the barrier@19#.
Since the group delay is proportional to the energy store
saturates as the energy saturates. While we originally der
this result for a photonic band-gap structure, it should h
for any barrier in which there is an exponential decay
stored energy density with distance. Here we derive the l
iting values of the stored electric and magnetic energie
the cutoff waveguide and show that they explain the satu
tion of group delay.

From Eqs.~28! and ~29! we find

lim
L→`

^U&5
U0b2g2

k~k21b2!k0
2 , ~33a!

lim
L→`

~^Um&2^Ue&!5
U0b2k2

k~k21b2!k0
2 , ~33b!

where U05«0AuE0u2/4. Using these saturated stored en
gies in Eq.~16!, we obtain in the limitL→`,

td5
2

kvg1
0 S v1

v D 2 k2

k21b2 , t i5
2

kvg1
0 S v1

v D 2 b2

k21b2 ,

tg5td1t i5
2

kvg1
0 S v1

v D 2

. ~34!

FIG. 2. Transmissivity of a section of waveguide below cuto
Heren153,n251.
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Thus the Hartman effect in a cutoff waveguide is the resul
the saturation of stored energy with increasing length. B
cause of the exponential decay of the electromagnetic fi
with distance, beyond a certain decay length 1/k, any addi-
tional barrier length adds little to the total integrated stor
energy. It is this stored energy that determines the dela
the output peak. An output peak is the result of the bar
releasing energy it has stored from the instant the pulse
first turned on. An anomalously short delay in the appeara
of a peak is more an indication of a cavity lifetime than of
propagation delay. The experimental results of Nimtz a
others@4# as well as the theoretical prediction of Hartma
can thus be understood without having to appeal to supe
minal velocities. These anomalously short delays are alw
preceded by a lengthy cavity filling time during which th
exponential standing wave mode is set up@33#. This filling
time should be accounted for in any discussion of cau
relationships between input and output pulses. Note
above the cutoff frequency of the barrier the hyperbolic fun
tions in the tunneling time become trigonometric functio
and hence there is no saturation with length in that case
this allowed region of propagation there are still delays t
can be less thanL/c. These occur in the low transmissio
parts of the barrier when the guide wavelength is mu
greater than the barrier thickness. It is for those regions
the interference explanation of anomalous delays may be
plicable @13#.

VII. ENERGY VELOCITY

If neither the group delay nor the dwell time can be as
ciated with a traversal velocity through the barrier, is the
some physically meaningful velocity that leads to sensi
results? After all, some energy does get transmitted thro
the barrier. The output pulse does contain energy otherwi
could not be detected. A single purely evanescent mode
not transmit any time averaged power. That is because
electric and magnetic fields are in quadrature (90° out

FIG. 3. ~Color online! Dwell time, self-interference delay, an
group delay for a barrier withgL55,n153,n251.
5-6
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phase!. There is, however, a reactive power flow that r
verses direction twice per cycle and has no time aver
value. So long as the quadrature relationship is maintai
there will be no time average power flow. This is the case
an infinitely long evanescent region. In a finite region, ho
ever, there will be some reflection of the forward attenuat
evanescent mode at the exit. Because the cutoff waveg
has a purely imaginary characteristic impedance, the refl
tion coefficient will have a phase shift associated with it. T
reflected backward evanescent mode has a phase shift s
the total electric field is no longer in quadrature with t
magnetic field. Thus the interference between the forw
and backward evanescent modes gives rise to a nonzero
average power flow. This power flow is not due to a prop
gating wave but can be seen as the beating between
evanescent cavity modes. In addition to the purely reac
pulsations of energy, there is a time averaged contribu
due to the fact that net energy escapes through the boun
during each cycle. This energy is radiated away and does
return to the source. That energy must be replenished b
real power flow into the volume. Another way of saying t
same thing is that the wave impedance which is pur
imaginary for a single decaying evanescent mode~hence
purely reactive! acquires a real part when a reflected, pha
shifted antievanescent contribution is added. This real pa
the impedance governs the transfer of time-averaged po
from one end of the structure to the other.

The local energy velocity relates to the flow of real pow
It is defined as@15,34#

vE5
P

t

^W&
, ~35!

where^W& (J m21) is the time averaged energy density i
tegrated over the cross section andPt5uTu2Pin (W) is the
constant average power flow through that area. A globa
average energy velocity through the barrier can be define

VE5

1

L E
0

L

Ptdz

1

L E
0

L

^W&dz

. ~36!

The local and global energy velocities must be bound
from above by the speed of light in vacuumc. Here we
demonstrate by using the solutions for the fields within
evanescent region that the energy velocities are indeed
luminal. The energy per unit length is given by

W5
1

4 ES
@«~E•E* !1m~H•H* !#ds. ~37!

Using the field solutions in the barrier we find
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W5
«0uE0u2A

8k0
2ugu2 $~n1

21n2
2!k0

2 cosh2 k~z2L !

1@~b/k!2~k0
2n2

21g2!1k2#sinh2 k~z2L !%.

The maximum ofvE occurs where the denominatorW is a
minimum, since the numerator is constant inz. Clearly the
minimum of W is at z5L. Hence

~vE!max5
uTu2Pin

A«0uE0u2~n1
21n2

2!/8ugu2

5cS 2n1

n1
21n2

2DA12~v1 /v!2<c. ~38!

Thus the local energy velocity is always less thanc, increas-
ing from zero at the cutoff frequency of the external regi
to c@2n1 /(n1

21n2
2)# when far above cutoff. Of course, w

cannot go very far above cutoff if the wave is to be evan
cent in the barrier region.

Having shown that the local energy velocity is strict
subluminal, we now consider the global or average ene
velocity defined above. Again, since the numerator is c
stant,VE is maximized when the denominator is minimum
Hence

~VE!max5
LPt

min E
0

L

Wdz

<
LPt

L min~W!
, ~39!

where the inequality follows from the positive definite natu
of W. Recognizing the last term as (vE)max, we can then
state the following inequalities:

~VE!max<~vE!max<c. ~40!

Thus both the local and global energy velocities are nic
bounded from above by the vacuum speed of light. In rec
work Diener has proposed an unconventional definition of
energy transport velocity which seeks to separate sto
nonpropagating energy from propagating energy in the wa
guide @35#. We believe that this approach is fundamenta
flawed since the energy is stored in the entire electrom
netic field. One cannot separate longitudinal field ene
from transverse field energy since the field components
coupled into one electromagnetic wave.

Figure 4 shows the energy velocity in the barrier regi
normalized by the vacuum speed of light. The dotted curv
the group velocity~and energy velocity! in an infinite length
of the external waveguide. It is asymptotic toc/n1 . The
dashed curve is the group velocity~and energy velocity! in
an infinite length of the central waveguide for frequenc
above the cutoff frequency. It is asymptotic toc/n2 . The
energy velocity in the finite barrier is much less than t
speed of light for frequenciesv1,v,v2 within the stop
band. Outside the stop band the global energy velocity r
to an asymptotic value betweenvg1

0 andvg2
0 .
5-7
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VIII. A RECIPE FOR MEASURING DWELL TIME
AND ENERGY VELOCITY

The general relation linking the group delay to the dw
time can be used to measure the energy velocity. The gr
delay is a well defined, measurable quantity for narrowba
pulses that satisfy the conditions for the validity of the gro
delay notion. It is determined by measuring the time diff
ence between an input pulse peak and an output pulse p
In fiber-optic communications, group delay is also routine
measured by monitoring the phase shift between an ou
modulation and an input modulation. The self-interferen
delay is also a measurable quantity determined by measu
the complex reflection coefficient of the barrier.~One way is
by making cw standing wave measurements with a slo
line which yields the magnitude and phase of the reflect
coefficient.! From these two measurements we obtain
dwell time astd5tg2t i . From Eq.~36!, the global energy
velocity is

VE5
uTu2L

td
. ~41!

Hence a series of cw measurements yields all the informa
we need to characterize the dynamic response of the ba
We may also define an energy transit time astE5L/VE
5td/uTu2 . This is the time it takes for all the energy store
in the barrier to leave through the exit atz5L, assuming it is
transported with the average energy velocity. This time
much longer than the group delay, which is a 1/e lifetime of
stored energy escaping through both ends.

IX. GROUP DELAY VERSUS GROUP VELOCITY

We assert that no one has yet measured a superlum
tunnelingvelocity. What have been measured are groupde-
lays. The distinction is not just semantic. A delay time b
itself makes no assumption about the mechanism respon
for the delay. It could be due to absorption and reemiss
storage, multiple reflection, transmutation, even perh

FIG. 4. ~Color online! Energy velocity for a tunneling evanes
cent mode~solid curve!. The stopband is the frequency range
, f / f 1,3. HeregL55, n153, n251.
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propagation. A velocity, on the other hand, assumes that
phenomenon in question, in this case a pulse peak, actu
propagates. In doing so, it passes continuously through e
point along a trajectory. For tunneling pulses, we have sho
through direct numerical solutions of the wave equation t
the pulse peak does not propagate from input to outp
therefore the notion of group velocity is not relevant. It
often said that evanescent waves propagate with superl
nal velocities. That by itself is a contradiction in terms. Ev
nescent waves, by definition, do not propagate. They
storage fields that oscillate in place. If they are traveling th
cannot be evanescent.

Distortionless tunneling is a quasistatic process where
pulse length greatly exceeds the barrier length@16#. This is
true in all experiments where tunneling without distortio
has been observed. It is true in numerical simulations wh
‘‘infinite’’ tunneling velocities have been claimed. In Re
@36#, for example, a pulse of width 37.32 ns was said to ha
tunneled with infinite speed through a barrier of length 32
mm. Given that the spatial extent of the tunneling pulse w
11.2 m, which isthree hundred and forty times the barrie
width, it is safe to say that this was a steady state process
that the peak was always at the exit as well as at the inpu
fact, with respect to the barrier, this pulse is not a localiza
object for which one can speak of a transit time. This qua
static nature of the interaction is also true in other ‘‘super
minal’’ contexts such as in gain media where a 720-m-lo
pulse was used to probe a 6-cm sample@37#. This in itself
raises questions about the possibility of localizing a peak
broad in a sample so small. To what accuracy can suc
measurement be made? In the adiabatic tunneling proc
there is a long build up time as the front of the pulse fills t
barrier with energy@33#. This filling process takes a coupl
of transit times. As the main part of the pulse arrives it ca
not propagate through the barrier because it is below
cutoff frequency. It can only modulate the stored energy
the barrier. Some of the stored energy leaks out and is c
verted to propagating energy. The output simply follows t
input with a small delay owing to energy storage. Because
the quasistatic nature of the tunneling process, what is a
ally measured is a phase shift of an amplitude modulatio

X. CONCLUSION

In summary, we have derived an explicit relation betwe
group delay and stored magnetic and electric energie
waveguide junctions such as the ones used in tunneling
periments. For evanescent modes, the electric and mag
energies differ. This leads to an additional term in the re
tion between group delay and stored energy for wavegu
terminations that was derived by Dicke some time ago. T
additional term is also related to a self-interference de
experienced by a tunneling pulse. We are thus able to exp
the group delay as a sum of a dwell time inside the bar
and a self-interference delay, something that had previou
been thought impossible. Both of these delays saturate
distance because the stored energy densities, being expo
tially decaying functions of distance, result in saturated in
grated energies. Because they saturate with distance
5-8
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cannot possibly be propagation delays, unless we assum
waves are smart enough to adjust their velocities so they
cover increasing distances in the same amount of time.
anomalous group delays seen in barrier tunneling are
propagation delays but a measure of cavity lifetime. On
other hand, one can define a strictly luminal energy veloc
tt

.

01661
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which can actually be determined experimentally by m
surements of group delay and self-interference delay.
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